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Perturbation theory for the triple-well anharmonic oscillator: 
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Abstract. Asymptotic formulae of the energy eigenvalues for the states which ‘originate’ 
from the middle well of the one-dimensional Schrodinger equation with the potential 
U ( x )  = x 2 ( R 2 -  x Z ) * / 8 R 4  are analysed. In particular, the relation between eigenvalues 
for modal and non-modal solutions is determined analytically to  the next higher approxima- 
tion, and compared with available numerical data. 

1. Introduction 

In our previous paper (Damburg and Propin 1982, to be referred to as I) we studied 
perturbation theory at large order for the one-dimensional Schrodinger equation 

d2JI/dx2+[2E - x 2 ( R 2 -  x ’ ) ~ / ~ R ~ ] J I  = 0 (1) 
where R is a large parameter. Here we continue to study this problem €or the states 
which ‘originate’ from the middle well. Their energy eigenvalues can be approximated 
by the perturbation expansion 

E o = i n + a - ( 6 n 2 + 6 n + 3 ) / 4 R 2 + .  . . . (2) 

In I, it was shown that an exponentially small shift should be added to Eo in order to 
make the asymptotic expansion for E more consistent. For modal solutions of equation 
( l ) ,  we obtained 

Em=E,+6E,  (3) 

where 

. .>. ~ 3 n + 3 / 2  exp( -aR ’) ( 72n2+120n+63+,  
8R2  

SE =(-l)n+l 1- 2n/2+5/4r(+n +:)ryn + 1) 

In I we considered also non-modal solutions of equation ( l ) ,  

E,, = Eo + i iy,  

where 

(4) 

$ y  = 6E. (6) 
In I we were not quite consistent in taking into account the sign of y and had instead 
of (6) y = 2 ( S E / .  But that was insignificant for the results presented in I. Comparison 
of the results obtained by use of asymptotic formulae with the results of exact numerical 
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solution of equation (1) was presented in I. Numerical data for non-modal solutions 
were taken from Benassi er al (1979). Overall agreement appeared to be excellent. 
Nevertheless, we must point out that formula ( 6 )  was only approximate, and now turn 
to its improvement. 

2. Terms exp(-$R*) in solutions of (1) 

Recollecting that in order to find SE in I we were using the substitution n + n + A ( n ) ,  
let us now extend it by one step, namely 

n + n + A ( n + A ( n ) ) = n + A ( n ) + h ( n )  dA(n)/dn+.  . . 

Substituting (7) into (2), we obtain with accuracy of up to terms of O(A3) 

E, = E,+ SE + 6E‘, 

where 

~ 6 n + 3  exp(-4R2) 6E‘ = (3 In R -;In 2--4$(4n+j)-$(n+ 1) 2n+3’2[r(tn +:)r(n + 1)i2 

-[(72n2+96n+51)[3 In R -$  In 2-$$(tn+a)- $(n+ l)] 

+72n+48] /4R2+.  . .}. 
In order to obtain non-modal solutions, we substitute 

n + n + i A ( n + i A ( n ) ) = n + i A ( n ) - A ( n )  dA(n)/dn+.  . . 
into equation (2) and obtain 

E,, = E,+fiy’-SE’. 

The level width y’ is now defined as 
4 y’ = 4 y - SE”, 

where 

+. . .). SE” = 7rR6n+3 exp(-$R2) ( 1-72n2+96n+51 
+$)r( + 1) i2  4R2 

By using numerical methods for solving (l),  we can calculate values 5 y‘ and E,- 
Re E,,. These two quantities coincide for large R with accuracy of up to terms of 
O(exp(-$R2)), as was shown in I. Namely, in such an approximation the formula (6) 
was obtained. By taking into account terms -exp(-fR2), we have the improved 
relation 

(14) A = (E, -Re Enm) - 4 y ’  = 2SE’+ SE”. 

3. Comparison with the numerical data 

In table 1 we compare results for values of A obtained for the ground state by use of 
the asymptotic formula (14) with numerical results. We take numerical values of A 
from data presented in I. 
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Table 1. 

n=O 

- 
g = \' 21 R A n u m  A=, = 2SE' + SE" 

0.20 -0.101 x 0.1359X lo-' 
0.22 0.682 X lo-' 0.6909 x lo-' 
0.24 0.1166X10-' 0.1252x 10-' 
0.26 0.9440 X lo-.' 1.0891 x lo-' 
0.28 0.4395 x lo-' 0.5489 X 
0.30 0.1366X10-' 0.1801 X IO-' 

As seen from table 1 ,  the agreement between asymptotic and numerical results for A 
is satisfactory, except for g = 0.20. We  note that in formula (14) we obtained only 
two terms; the next terms in expansion in powers of R - 2  would improve agreement 
still more. Discrepancy between the data for g = 0.20 we tentatively attribute to  the  
sensitivity of such a minute value of A to a small inaccuracy in the numerical result 
for the non-modal solution. 

In conclusion, we should make one essential comment. It is useless to take into 
account the term 6E' when calculating E ,  or  Re  E,,,,, by using the asymptotic formulae 
(8) o r  ( l l ) ,  because the intrinsic error of the asymptotic expansion for Eo is larger 
than SE' ,  as follows from the analysis presented in I. 
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